SOLUTION FOR THE DESIGN OF THERMAL IR OBJECTIVES

GRUESCU Corina¹, BODEA Renata², AMARANDEI Mihaela¹, GARAIMAN Alis¹
¹University Politehnica Timisoara, ²University of Oradea
corina_gruescu@mec.upt.ro, prod.conf@rdslink.ro, amarandei_mihaela@yahoo.com
gugoasa_alice@yahoo.com

Keywords: optical design, IR systems, thermo-vision, objectives, air-spaced doublet

Abstract: The paper presents a complete design of an IR objective, working within the spectral range of (5…10)µm. Such IR components are appropriate to night vision apparatuses, thermographic cameras or other applications, which collect temperature distribution and turn it into visual signals. Large spectrum IR optical components design is difficult because of the limited offer regarding suited optical materials and lack of specific design algorithms. The paper provides a solution using a pair of materials AsGa-ZnSe and insuring a very good quality of the image. The air-spaced resulted doublet analyzed on the specialized software OSLO belongs to the diffraction limited systems class.

1. INTRODUCTION
Thermal vision is relatively recent, but it is very frequently used in now-days. There are a lot of applications based on transforming the temperature distribution captured by a special IR camera into a visual image. Military night visions, civil surveillance in public or private spaces, industrial or medical thermography are very common examples of IR imagery. Environmental radiation, including human body, covers a large spectral range, comprising the domain of 5 to 10 µm, which belongs to the infrared electromagnetic radiation. IR cameras sense the difference of temperature between adjacent areas of an object and transfer the information to a converter of signal, which translates the IR information into a visible one. The objectives of such cameras are totally different from the one working with visible radiation. These objectives must be transparent for the IR radiation and must provide a high quality image regarding clarity, contrast and resolution.

There are three major difficulties in IR objectives design:

- IR transparent materials are available only in a limited number of sorts
- small number of materials can hardly provide compatible combinations to ensure correction of aberrations
- design algorithms created for optical components working in the visible range might not fit for IR applications because refractive and dispersive properties of the materials are very different.

2. DESIGN ALGORITHM FOR AN IR OBJECTIVE
Proper image quality imposes the use of a compound objective. The doublet is the first choice, as it assumes the correction of spherical aberration, coma and chromatic aberrations.

By short, the design algorithm of the doublet goes through the following steps [1], [2]:

1. calculus of total curvatures (cₐ and cₜ) from the condition of chromatic correction:

 \[f'_a = \frac{f'(v_a - v_b)}{v_a}, \]
 \[f'_b = \frac{f'(v_b - v_a)}{v_b} = -f'_a \frac{v_a}{v_b}, \]
 \[c_a = \frac{1}{f'_a(n_a - 1)}, \]

2.38
where \(a, b \) are the indexes for the first, respectively the second lens, \(f' \) – effective focal length, \(\nu \) - Abbe number, \(n \) – refractive index of materials

- paraxial tracing of the marginal ray and principal ray
- calculus of \(G \) – sums for both materials using the formulae:

\[
G_1 = \frac{1}{2} n^2 (n-1), \quad G_2 = \frac{1}{2} (2n+1)(n-1),
\]

\[
G_3 = \frac{1}{2} (3n+1)(n-1), \quad G_4 = \frac{1}{2n} (n+2)(n-1),
\]

\[
G_5 = \frac{2 (n^2 - 1)}{n}, \quad G_6 = \frac{1}{2n} (3n+2)(n-1),
\]

\[
G_7 = \frac{G_2}{n}, \quad G_8 = \frac{G_1}{n}.
\]

- calculus of curvatures \(c_1 \) and \(c_3 \) from the conditions of correcting coma and spherical aberration:

\[
\sum CC = CC_a + CC_b = 0,
\]

Equation (9) gives a linear relationship between curvatures \(c_1 \) and \(c_3 \):

\[
c_3 = k_1 c_1 + k_2,
\]

where

\[
k_1 = -\frac{G_5 a c_a}{G_5 b c_b},
\]

\[
k_2 = \frac{1}{0.25 G_5 b c_b} \left(G_7 a c_a p_a + G_8 a c_a^2 + G_7 b c_b p_b + G_8 b c_b^2 \right).
\]

The condition to annul the spherical aberration may be written as:

\[
\sum TSC = TSC_a + TSC_b = 0,
\]

where TSC is the transversal spherical contribution of a lens.

Equations (9) and (13) provide a second degree equation with the unknown variable \(c_1 \):

\[
k_3 c_1^2 + k_4 c_1 + k_5 = 0,
\]

where

\[
k_3 = G_2 a c_a + G_4 b c_b k_1^2,
\]

\[
k_4 = -G_5 a c_a p_a - G_2 b c_b^2 k_1 + 2 G_4 b c_b k_1 k_2 - G_5 b c_b k_1 p_b - G_2 a c_a^2,
\]

\[
k_5 = G_1 b c_b^2 + G_3 a c_a^2 p_a + G_6 a c_a p_a^2 + G_3 b c_b^2 p_b + G_6 b c_b p_b^2 -
\]

\[
- G_2 b c_b^2 k_2 + G_4 b c_b k_2^2 - G_5 b c_b p_b k_2 + G_1 b c_b^3
\]

- having the values of \(c_1, c_3, c_a, \) and \(c_b \) the other two curvatures result as:

\[
c_2 = c_1 - c_a,
\]

\[
c_4 = c_3 - c_b.
\]

The effective shape of the doublet depends on the given aperture and chosen pair of materials. There are three classical groups of shapes possible to obtain: Fraunhofer-type (edge contact, cemented and center contact), Gauss-type and Steinheill-type (fig.1).
Fraunhofer Gauss
Steinheil

Fig. 1 Geometrical shapes of the doublet

☐ introduction of center thicknesses
☐ analysis of residual aberrations.

3. NUMERICAL APPLICATION

The primary input data for doublet are:

☐ EFL (f') = 100 mm
☐ D = 16 mm (corresponding to f/# = 1/6.25)
☐ object abscissa = -∞
☐ half field angle = 5°
☐ working spectral range: (5…10) µm.

The main problem consisted in finding a compatible pair of materials, so that equation (14) admits real roots. The final choice went to the pair GaAs – ZnSe, whose refractive properties are presented in table 1.

Table 1 Optical properties of GaAs and ZnSe [3]

<table>
<thead>
<tr>
<th>Material</th>
<th>(n(\lambda = 5)_{\mu m})</th>
<th>(n(\lambda = 7.4)_{\mu m})</th>
<th>(n(\lambda = 10)_{\mu m})</th>
<th>Transmission factor [%]/sample thickness [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs</td>
<td>3.3010</td>
<td>3.2905</td>
<td>3.2770</td>
<td>>0.5/7</td>
</tr>
<tr>
<td>ZnSe</td>
<td>2.4295</td>
<td>2.4201</td>
<td>2.4053</td>
<td>>0.7/6.3</td>
</tr>
</tbody>
</table>

Applying the algorithm described above, resulted the following solution:

☐ \(r_1 = 104.86 \)
☐ \(r_2 = \infty \)
☐ \(r_3 = -548 \)
☐ \(r_4 = 119.87 \)
☐ \(d_1 = 2.2 \)
☐ \(d_2 = 1.52 \)
☐ \(d_3 = 2.5 \)
☐ \(f' = 99.99 \).

Figure 1 shows data above introduced into the Surface Data window of the analysis software OSLO LT.
The following figures illustrate the results of the optical quality evaluation, performed automatically by the software on the IR doublet. In figure 2, the right – down section provides a scaled scheme of the optical system.

The left – down section of figure 2 indicates that the reference spectral line is $\lambda=7.5\mu m$ and that the spectral limits of the working domain are $\lambda=5\mu m$, respectively $\lambda=10\mu m$. Colours green, blue and red are assigned to these spectral lines in graphical representations of sphero-chromatism, distortion, lateral color and tangential ray intercept.

For the given aperture and considering the high refractive indexes, the spherical aberration is reasonably small. The chromatic aberrations are even negligible, taking into account the band-width. The chromatic focal shift is less than 0.1 mm all over the range. Distortion and lateral colour are also far too small to alter the image quality. Astigmatism is pretty small for a 10° field.
Wave wise, the doublet is diffraction limited over two thirds of the aperture, where RMS OPD is less than 0.25\(\lambda \) (accordingly to Rayleigh criterion), as figure 3 renders.

The abscissa of the image plane was optimized on the criterion of minimum RMS OPD – on axis and the spot diagram analysis (fig. 4) confirms the correctness of the resulted position for the receiver of radiation. The black circles on the spot diagrams indicate the size of the theoretical Airy circle.

The Fourier analysis provides the PSF representation (fig. 5) and the course of MTF and PTF of the system (fig. 6). A value of 0.98 for PSF surely indicates a diffraction limited optical system. Figure 6 is very important as it is the only one to characterize the resolution and global illumination of the image. The cut-off spatial frequency happens to be 32 cycles/mm, which coincides with the limit resolution of the human eye. That means the thermal sensor must have at least the same resolution in order to preserve the objective’s quality along the entire optical system.
4. CONCLUSIONS

Traditional design algorithms created for components working in the visible range can be adjusted for high quality IR applications. Specific problems occur due to extended spectral band, high refractive indexes of IR materials and limited number of sorts available for such materials. Skills and expertise in optical design allow getting very good quality systems for infrared application, such as the solution presented above.

REFERENCES